329 research outputs found

    Generating Representative ISP Technologies From First-Principles

    Full text link
    Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance

    Smooth Multirate Multicast Congestion Control

    Full text link
    A significant impediment to deployment of multicast services is the daunting technical complexity of developing, testing and validating congestion control protocols fit for wide-area deployment. Protocols such as pgmcc and TFMCC have recently made considerable progress on the single rate case, i.e. where one dynamic reception rate is maintained for all receivers in the session. However, these protocols have limited applicability, since scaling to session sizes beyond tens of participants necessitates the use of multiple rate protocols. Unfortunately, while existing multiple rate protocols exhibit better scalability, they are both less mature than single rate protocols and suffer from high complexity. We propose a new approach to multiple rate congestion control that leverages proven single rate congestion control methods by orchestrating an ensemble of independently controlled single rate sessions. We describe SMCC, a new multiple rate equation-based congestion control algorithm for layered multicast sessions that employs TFMCC as the primary underlying control mechanism for each layer. SMCC combines the benefits of TFMCC (smooth rate control, equation-based TCP friendliness) with the scalability and flexibility of multiple rates to provide a sound multiple rate multicast congestion control policy.National Science Foundation (ANI-9986397, ANI-0092196

    The rise of the sharing economy: estimating the impact of Airbnb on the hotel industry

    Full text link
    Peer-to-peer markets, collectively known as the sharing economy, have emerged as alternative suppliers of goods and services traditionally provided by long-established industries. We explore the economic impact of the sharing economy on incumbent firms by studying the case of Airbnb, a prominent platform for short-term accommodations. We analyze Airbnb's entry into the state of Texas, and quantify its impact on the Texas hotel industry over the subsequent decade. We estimate that in Austin, where Airbnb supply is highest, the causal impact on hotel revenue is in the 8-10% range; moreover, the impact is non-uniform, with lower-priced hotels and those hotels not catering to business travelers being the most affected. The impact manifests itself primarily through less aggressive hotel room pricing, an impact that benefits all consumers, not just participants in the sharing economy. The price response is especially pronounced during periods of peak demand, such as SXSW, and is due to a differentiating feature of peer-to-peer platforms -- enabling instantaneous supply to scale to meet demand.Accepted manuscrip

    On the Geographic Location of Internet Resources

    Full text link
    One relatively unexplored question about the Internet's physical structure concerns the geographical location of its components: routers, links and autonomous systems (ASes). We study this question using two large inventories of Internet routers and links, collected by different methods and about two years apart. We first map each router to its geographical location using two different state-of-the-art tools. We then study the relationship between router location and population density; between geographic distance and link density; and between the size and geographic extent of ASes. Our findings are consistent across the two datasets and both mapping methods. First, as expected, router density per person varies widely over different economic regions; however, in economically homogeneous regions, router density shows a strong superlinear relationship to population density. Second, the probability that two routers are directly connected is strongly dependent on distance; our data is consistent with a model in which a majority (up to 75-95%) of link formation is based on geographical distance (as in the Waxman topology generation method). Finally, we find that ASes show high variability in geographic size, which is correlated with other measures of AS size (degree and number of interfaces). Among small to medium ASes, ASes show wide variability in their geographic dispersal; however, all ASes exceeding a certain threshold in size are maximally dispersed geographically. These findings have many implications for the next generation of topology generators, which we envisage as producing router-level graphs annotated with attributes such as link latencies, AS identifiers and geographical locations.National Science Foundation (CCR-9706685, ANI-9986397, ANI-0095988, CAREER ANI-0093296); DARPA; CAID

    Implications of Selfish Neighbor Selection in Overlay Networks

    Full text link
    In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230); National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 020206

    TwitterMancer: Predicting Interactions on Twitter Accurately

    Full text link
    This paper investigates the interplay between different types of user interactions on Twitter, with respect to predicting missing or unseen interactions. For example, given a set of retweet interactions between Twitter users, how accurately can we predict reply interactions? Is it more difficult to predict retweet or quote interactions between a pair of accounts? Also, how important is time locality, and which features of interaction patterns are most important to enable accurate prediction of specific Twitter interactions? Our empirical study of Twitter interactions contributes initial answers to these questions. We have crawled an extensive dataset of Greek-speaking Twitter accounts and their follow, quote, retweet, reply interactions over a period of a month. We find we can accurately predict many interactions of Twitter users. Interestingly, the most predictive features vary with the user profiles, and are not the same across all users. For example, for a pair of users that interact with a large number of other Twitter users, we find that certain "higher-dimensional" triads, i.e., triads that involve multiple types of interactions, are very informative, whereas for less active Twitter users, certain in-degrees and out-degrees play a major role. Finally, we provide various other insights on Twitter user behavior. Our code and data are available at https://github.com/twittermancer/. Keywords: Graph mining, machine learning, social media, social network

    CASPR: Judiciously Using the Cloud for Wide-Area Packet Recovery

    Full text link
    We revisit a classic networking problem -- how to recover from lost packets in the best-effort Internet. We propose CASPR, a system that judiciously leverages the cloud to recover from lost or delayed packets. CASPR supplements and protects best-effort connections by sending a small number of coded packets along the highly reliable but expensive cloud paths. When receivers detect packet loss, they recover packets with the help of the nearby data center, not the sender, thus providing quick and reliable packet recovery for latency-sensitive applications. Using a prototype implementation and its deployment on the public cloud and the PlanetLab testbed, we quantify the benefits of CASPR in providing fast, cost effective packet recovery. Using controlled experiments, we also explore how these benefits translate into improvements up and down the network stack

    TwitterMancer: predicting interactions on Twitter accurately

    Full text link
    This paper investigates the interplay between different types of user interactions on Twitter, with respect to predicting missing or unseen interactions. For example, given a set of retweet interactions between Twitter users, how accurately can we predict reply interactions? Is it more difficult to predict retweet or quote interactions between a pair of accounts? Also, how important is time locality, and which features of interaction patterns are most important to enable accurate prediction of specific Twitter interactions? Our empirical study of Twitter interactions contributes initial answers to these questions.We have crawled an extensive data set of Greek-speaking Twitter accounts and their follow, quote, retweet, reply interactions over a period of a month. We find we can accurately predict many interactions of Twitter users. Interestingly, the most predictive features vary with the user profiles, and are not the same across all users. For example, for a pair of users that interact with a large number of other Twitter users, we find that certain “higher-dimensional” triads, i.e., triads that involve multiple types of interactions, are very informative, whereas for less active Twitter users, certain in-degrees and out-degrees play a major role. Finally, we provide various other insights on Twitter user behavior. Our code and data are available at https://github.com/twittermancer/.Accepted manuscrip

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923
    corecore